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INTRODUCTION

Advances in wireless communication systems are
highly dependent upon improvements in microwave
dielectric materials. In particular, centimeter and milli-
meter wave wireless applications require high-

 

Q

 

 mate-
rials that would be less expensive than the known high-

 

Q

 

 perovskite-structure barium-tantalate-based micro-
wave dielectrics [1–3] and would not need high sinter-
ing temperatures. The columbite-structure magnesium
niobate MgNb

 

2

 

O

 

6

 

 offers high dielectric performance in
the microwave region [4–7]. Owing to its high micro-
wave quality factor (

 

Q

 

), magnesium niobate is of inter-
est for a variety of practical applications. In addition,
this compound is widely used as a precursor in the syn-
thesis of the high-

 

Q

 

 dielectric material
Ba(Mg

 

1/3

 

Nb

 

2/3

 

)O

 

3

 

 and Pb(Mg

 

1/3

 

Nb

 

2/3

 

)O

 

3

 

-based ferro-
electric relaxors [8, 9].

The synthesis of phase-pure magnesium niobate
with the columbite structure presents a number of prob-
lems. Using solid-state synthesis, Ananta et al. [5]
obtained x-ray pure MgNb

 

2

 

O

 

6

 

 with the columbite struc-
ture by heat treatment at 1150

 

°

 

C for 4 h. Heat treatment
at higher or lower temperatures led to the formation of
Mg

 

4

 

Nb

 

2

 

O

 

9

 

 as an impurity phase. Moreover, micro-
structural examination showed that even the samples
that were phase-pure by x-ray diffraction (XRD) con-
tained impurity phases [5]: in addition to MgNb

 

2

 

O

 

6

 

,
trace levels of Mg

 

4

 

Nb

 

2

 

O

 

9

 

 (alpha-alumina structure)
were present. Phase-pure columbite-structure niobates
were prepared earlier by solution-phase reactions [10],
a molten-salt process [11], and oxalate route [12].

Phase-pure columbite niobates are difficult to obtain for
several reasons, in particular, because the formation of
MgNb

 

2

 

O

 

6

 

 is typically accompanied by that of
Mg

 

4

 

Nb

 

2

 

O

 

9

 

 [5]. Note that the Mg–Nb–O system con-
tains four ternary compounds: MgNb

 

2

 

O

 

6

 

, Mg

 

4

 

Nb

 

2

 

O

 

9

 

,
Mg

 

5

 

Nb

 

4

 

O

 

15

 

, and Mg

 

1/3

 

Nb

 

11(1/3)

 

O

 

29

 

 [13, 14]. At room
temperature, however, only MgNb

 

2

 

O

 

6

 

 and Mg

 

4

 

Nb

 

2

 

O

 

9

 

are stable [15]. For this reason, phase-pure MgNb

 

2

 

O

 

6

 

can be prepared by solid-state reactions only if the sam-
ple is heat-treated for a long time (20–24 h) [5, 16].

MgNb

 

2

 

O

 

6

 

 ceramics offer high microwave quality
factors (

 

Qf

 

 = 79600 GHz) [6], which can be raised fur-
ther by prolonged (50 h) heat treatment (

 

Qf

 

 =
95900 GHz) [7].

The properties of multiphase systems are known to
be sensitive to even slight deviations from stoichiome-
try. Data on the effect of nonstoichiometry on the prop-
erties of MgNb

 

2

 

O

 

6

 

 are not available in the literature.

The objective of this work was to study the effect of
small deviations from stoichiometry on the phase com-
position, microstructure, and microwave dielectric
properties of columbite-structure magnesium niobate
ceramics.

EXPERIMENTAL

Samples for this investigation were prepared by
solid-state reactions in appropriate mixtures of analyti-
cal-grade MgO and Nb

 

2

 

O

 

5

 

 (or nanoparticulate niobium
oxide prepared by solution-phase reaction). The mix-
tures were homogenized by ball milling with bidistilled

 

Synthesis and Properties
of Columbite-Structure Mg

 

1 – 

 

x

 

Nb

 

2

 

O

 

6 – 

 

x

 

A. G. Belous

 

a

 

, O. V. Ovchar

 

a

 

, D. O. Mishchuk

 

a

 

, A. V. Kramarenko

 

a

 

,
B. Jancar

 

b

 

, J. Bezjak

 

b

 

, and D. Suvorov

 

b

 

a

 

 Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 
pr. Akademika Palladina 32/34, Kiev, 03680 Ukraine

 

b

 

 Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: belous@ionc.kar.net

 

Received July 13, 2006

 

Abstract

 

—The formation of the columbite-structure magnesium niobate MgNb

 

2

 

O

 

6

 

 is a multistep process. Sin-
gle-phase material can only be obtained through long-term high-temperature heat treatment. Deviations from
stoichiometry have a significant effect on the microwave quality factor 

 

Q

 

 of the material: magnesium-deficient
ceramics contain small amounts of Nb

 

2

 

O

 

5

 

 and have relatively low 

 

Q

 

 values, whereas an excess of magnesium
leads to the formation of Mg

 

4

 

Nb

 

2

 

O

 

9

 

 (alpha-alumina structure) as an impurity phase, thereby drastically increas-
ing the electrical 

 

Q

 

.

 

DOI: 

 

10.1134/S0020168507040152



 

INORGANIC MATERIALS

 

      

 

Vol. 43

 

      

 

No. 4

 

      

 

2007

 

SYNTHESIS AND PROPERTIES OF COLUMBITE-STRUCTURE Mg

 

1 – 

 

x

 

Nb

 

2

 

O

 

6 – 

 

x

 

413

 

water. After boiling down and drying at 100–150

 

°

 

C, the
mixtures were screened through a nylon-6 sieve. To
study phase changes during synthesis, the dried mix-
tures were pressed at 50 MPa, and the green compacts
were fired at temperatures of up to 1400

 

°

 

C. Next, the
samples were ground, and their phase composition was
determined by XRD (DRON-3M powder diffractome-
ter, 

 

Cu

 

K

 

α

 

 radiation, step-scan mode with a step size

 

∆

 

(

 

2

 

θ

 

) = 

 

0.02°

 

 and a counting time of 10 s per data
point). As external standards, we used SiO

 

2

 

 (

 

2

 

θ

 

 calibra-
tion) and Al

 

2

 

O

 

3

 

 (NIST SRM 1976 intensity standard
[17]). The phases present were identified using JCPDS
Powder Diffraction File data. Ceramic samples were
prepared by sintering at temperatures from 1350 to
1400

 

°

 

C for 2–8 h.

The microstructure and chemical composition of the
synthesized phases were determined by scanning elec-
tron microscopy (SEM) on a JEOL JXA 840A
equipped with an energy-dispersive x-ray (EDX) spec-
trometer (Tracor Northern Series II x-ray microana-
lyzer system). In dielectric measurements in the micro-
wave region, we used an Agilent N5230A PNA-L net-
work analyzer.

RESULTS AND DISCUSSION

To optimize the sintering temperature, we studied
phase changes in Mg

 

1 – 

 

x

 

Nb

 

2

 

O

 

6 – 

 

x

 

 samples with 

 

x 

 

=
0.03, 0.01, 0, –0.01, and –0.03.

XRD data indicate that, independent of whether we
use off-the-shelf niobium oxide or the material synthe-

sized via precipitation from solution, MgNb

 

2

 

O

 

6

 

 forma-
tion in the mixtures studied begins above 700

 

°

 

C
(Figs. 1, 2). After heat treatment at 700

 

°

 

C, the mixtures
consisted predominantly of Nb

 

2

 

O

 

5

 

 and MgO. The
strongest reflection from MgO, 200, was located at
2

 

θ

 

 = 

 

43°

 

, whereas the observed temperature variations
of the intensity and position of the peaks from Nb

 

2

 

O

 

5

 

attested to a number of phase changes. In niobium
oxide synthesis through precipitation from solution, the
calcination temperature has a significant effect on the
crystal structure of the resulting oxide. As the heat-
treatment temperature is raised, the first to form is the
low-temperature phase (

 

N

 

1

 

) of niobium oxide (PDF,
no. 27-1003). Near 700

 

°

 

C, the low-temperature phase
(

 

N

 

1) transforms into β-Nb2O5(N2, PDF, no. 26-885). At
900°C, β-Nb2O5 transforms into the high-temperature
phase (N3) (Fig. 1, scan 3). In our syntheses with the
precipitated niobium oxide, at a short calcination time
(1 h) phase-pure MgNb2O6 was obtained at high temper-
atures (�1400°ë). The off-the-shelf niobium oxide con-
sisted of β-Nb2O5(N2) (Fig. 2). After heat treatment at
temperatures above 900°C, we observed diffraction
peaks from both the N2 and N3 oxides. The intensity of
the peaks from MgNb2O6 increased steadily with heat-
treatment temperature. However, even after calcination
at 1100°C for 1 h, the sample contained significant
amounts of unreacted oxides. At temperatures above
1200°C, the peaks from MgO completely disappeared,
but the samples contained small amounts of niobium
oxide. Phase-pure MgNb2O6 was obtained at 1400°C
(1 h).
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Fig. 1. Phase composition of MgO–Nb2O5 samples (precipitated Nb2O5) heat-treated for 1 h at different temperatures: (1) 700,
(2) 800, (3) 900, (4) 1000, (5) 1100, (6) 1200, and (7) 1400°C; N1–N3 = Nb2O5 (PDF, nos. 27-1003 (N1), 26-0885 (N1),
72-1121 (N2), and 37-1468 (N3)), M = MgO (PDF, no. 45-0946), M2 = MgNb2O6, M4 = Mg4Nb2O9 (PDF, no. 38-1459).
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Fig. 2. Phase composition of MgO–Nb2O5 samples (off-the-shelf Nb2O5) heat-treated for 1 h at different temperatures: (1) 700,
(2) 800, (3) 900, (4) 1000, (5) 1100, (6) 1200, and (7) 1400°C; N1–N3 = Nb2O5 (PDF, nos. 27-1003 (N1), 26-0885 (N1),
72-1121 (N2), and 37-1468 (N3)), M = MgO (PDF, no. 45-0946), M2 = MgNb2O6, M4 = Mg4Nb2O9 (PDF, no. 38-1459).
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Fig. 3. XRD patterns of powder samples calcined at 1150°C for (1) 1 and (2) 6 h.

Diffraction peaks from Mg4Nb2O9 were present at
calcination temperatures from 900 to 1200°C. Analy-
sis of our XRD data indicated that MgNb2O6 and
Mg4Nb2O9 formed by parallel reactions. After heat

treatment at 1200°C, the product consisted of
MgNb2O6 and small amounts of Mg4Nb2O9 and
Nb2O5, no matter which starting reagents had been
used. Our results suggest that magnesium niobate for-
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mation can be represented by the schemes

(1)

(2)

(3)

Phase-pure MgNb2O6 can be obtained either by raising
the heat-treatment temperature to 1400°C (Figs. 1, 2) or
by increasing the heat-treatment time at relatively low
temperatures (Fig. 3). The XRD pattern of the powder
synthesized at 1150°C in 1 h showed reflections from
Mg4Nb2O9 (Fig. 3). Increasing the heat-treatment time
to 6 h, we obtained phase-pure MgNb2O6 (Fig. 3).

The XRD patterns of the Mg1 – xNb2O6 – x samples
with x > 0 indicated the presence of Nb2O5 as a minority
phase. In the range –0.03 ≤ x < 0, we obtained XRD sin-

MgO Nb2O5 MgNb2O6,+ 700–1100°C

4MgO Nb2O5 Mg4Nb2O9,+ 900–1100°C

Mg4Nb2O9 3Nb2O5  4MgNb2O6.+ 1100–1400°C

gle-phase material. Electron-microscopic examination
showed however that, over the entire composition range
studied, the samples contained an impurity phase:
Nb2O5 at x > 0 and Mg4Nb2O9 at –0.03 ≤ x < 0 (Fig. 4).
Increasing the sintering time notably reduced the con-
tent of the impurity phase, but only at the stoichiomet-

10-GHz dielectric properties of Mg1 – xNb2O6 – x ceramics

x fres , GHz Qf, GHz ε TCF, ppm/°C

0.03 9.28 1400 20.8 –56

0.01 9.56 12000 19.7 –56

0 9.76 40000 18.5 –56

–0.01 9.60 107000 18.5 –59

–0.03 9.55 128000 21.5 –62

Note: TCF = temperature coefficient of resonant frequency.
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Fig. 4. SEM micrographs of Mg1 – xNb2O6 – x samples with x = (a) 0.03, (b, d) 0, and (c, e) –0.03 sintered for (a–c) 2 and (d, e) 6 h;
A = Mg4Nb2O9, B = Nb2O5.
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ric composition (x = 0) was single-phase material
obtained (Fig. 4).

The microwave dielectric properties of the
Mg1 − xNb2O6 – x samples are summarized in the table
and in Fig. 5. In the composition range studied, the
dielectric permittivity ε of the ceramics varies from
18.5 to 21.5. The presence of Nb2O5 (x > 0) drastically
reduces the electrical Q. At the same time, in the com-
position range –0.03 ≤ x < 0 the Qf product rises, reach-
ing 128000 GHz. Note that, in the range –0.03 ≤ x < 0,
where our samples have high Q values, they contain
Mg4Nb2O9 (alpha-alumina structure) as an impurity
phase. This phase has a relatively low permittivity, ε =
12, and very large microwave quality factor, Qf =
210000 GHz [18]. It seems likely that it is the presence
of small amounts of the high-Q phase Mg4Nb2O9

(alpha-alumina structure) in the columbite-structure
magnesium niobate which is responsible for the high
electrical Q of the two-phase Mg1 – xNb2O6 – x ceramics
with –0.03 ≤ x < 0.

CONCLUSIONS

The present results demonstrate that the formation
of the columbite-structure magnesium niobate
MgNb2O6 through solid-state reactions is a multistep
process and that the purity and particle size of the start-
ing reagents have little effect on the phase changes
involved in MgNb2O6 synthesis. Deviations from sto-
ichiometry in the Mg1 – xNb2O6 – x system lead to the
formation of impurity phases: Nb2O5 at x > 0 and
Mg4Nb2O9 at –0.03 ≤ x < 0. The presence of Nb2O5

reduces the microwave quality factor of the ceramics,
whereas Mg4Nb2O9 drastically increases it. The content
of the impurity phases decreases with increasing heat-

treatment time, but single-phase ceramics were only
obtained at the stoichiometric composition (x = 0).
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